Visual object tracking with adaptive structural convolutional network
نویسندگان
چکیده
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملRobust Online Visual Tracking with a Single Convolutional Neural Network
Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking because they require very long training time and a large number of training samples. In this work, we present an efficient and very robust online tracking algorithm using a single Convolutional Neural Network (CNN) for learning e...
متن کاملRotation Adaptive Visual Object Tracking with Motion Consistency
Visual Object tracking research has undergone significant improvement in the past few years. The emergence of tracking by detection approach in tracking paradigm has been quite successful in many ways. Recently, deep convolutional neural networks have been extensively used in most successful trackers. Yet, the standard approach has been based on correlation or feature selection with minimal con...
متن کاملConvolutional Regression for Visual Tracking
Recently, discriminatively learned correlation filters (DCF) has drawn much attention in visual object tracking community. The success of DCF is potentially attributed to the fact that a large amount of samples are utilized to train the ridge regression model and predict the location of object. To solve the regression problem in an efficient way, these samples are all generated by circularly sh...
متن کاملLearning Visual Odometry with a Convolutional Network
We present an approach to predicting velocity and direction changes from visual information (”visual odometry”) using an end-to-end, deep learning-based architecture. The architecture uses a single type of computational module and learning rule to extract visual motion, depth, and finally odometry information from the raw data. Representations of depth and motion are extracted by detecting sync...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2020
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2020.105554